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The crystal and molecular structure of the compound VO(C;Hi;sN20;), N,N’-ethylenebis(acetylacetoneiminato)oxova-
nadium(IV), VO(acen), has been determined by means of single-crystal X-ray diffractometry. The material crystallizes in
the monoclinic space group P2;/a with a = 13.687 (3) A, b = 11.957 (2) A, ¢ = 8.140 (1) A, 8 = 93.76 (2)°, and Z = 4.
The structure, including hydrogen atoms, was refined to an unweighted R factor of 7.59,. The coordination geometry
around the vanadium atom is square pyramidal. An apical oxovanadium distance of 1.585 (7) A was found. The basal
plane of the pyramid, defined by two cis oxygen and two cis nitrogen atoms of the 8-ketimine quadridentate ligand, lies 0.58 A
below the vanadium atom. When contrasted with the 8-diketone derivatives of VO?*, VO(acen) exhibits a surprising lack of
solvent dependence of its spectral properties. A possible explanation can be found in the donor properties of the quadri-
dentate ligand as reflected in the vanadium-basal ligand distances.

Introduction

Because of their stability and ready adaptability to
study by a variety of spectroscopic techniques, oxo-
vanadium(IV) complexes appear to be among the most
thoroughly studied transition metal compounds.!-?
Orne of the more interesting aspects of these complexes
is the solvent dependence of their spectroscopic proper-
ties. For example, the square-pyramidal 8-diketonates
of VO?+ show pronounced solvent shifts of their visible,
infrared, and esr spectral parameters.’® These effects
are attributed to axial ligation by the solvent molecule
with attendant formation of a six-coordinate complex
and change in the electronic structure.

It is therefore surprising to find that B-ketimine
complexes such as N,N’-ethylenebis(acetylacetone-
iminato)oxovanadium(IV), VO(acen), do not exhibit a
similar dependence of spectral properties on solvent.?
Geometric and/or electronic factors could be responsible
for this behavior. In the case of trigonal-bipyramidal
geometry,’ such as that found for VOCL(N(CHs;)s)s,
coordination by solvent in a sixth position appears to be
sterically hindered. Neither would a solvent-complex
interaction be expected for a dimeric species such as
the tartrate,®—% Nay{VO-di-tart]s-12H,0, or vanadyl
complexes which are already six-coordinate.

A further reason for lack of solvent dependence could
be due to charge build-up on the vanadium atom.?—1!
If the basal ligands are sufficiently strong donors
and if vanadium-oxygen multiple bonding is to be
maintained, axial coordination by a sixth ligand could be
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prevented. In order to determine which factors of the
above (if any) are dominant for the complex VO(acen),
a single-crystal X-ray study of this compound was
undertaken.

Unit Cell Data and Collection of Intensities

A sample of VO(C:HisN:0,), kindly supplied by
Professor L. J. Boucher, was recrystallized from ben-
zene. The systematic absences observed were /0,
l=2n+41,and 0RO, 2 = 2n + 1, which are consistent
with the space group P2;/a. The equivalent positions
of P2;/a, an alternative setting of P2;/c (no. 14, Cu¥),
are: =(x, y,2); =(Y/s —x, /2 + v, 2. The unit cell
parameters were found to be ¢ = 13.687 (3) A, b =
11.957 (2) A, ¢ = 8140 (1) A, and 8 = 93.76 (2)° by
least-squares refinement of 28 values for 18 reflections,
59° < 26 < 80°, centered on a GE XRD-5 diffrac-
tometer using Cu Ka radiation (A 1.5418 A) and a takeoff
angle of 2°. A density of 1.44 (2) g/cm? was observed
by flotation in a mixture of ethyl bromide and chloro-
benzene, which agrees with the value of 1.45 g/cm?®
calculated for four molecules of VO(acen) in the unit
cell.

A greenish black crystal of approximate dimensions
0.1 X 0.3 X 0.1 mm along @, b, and ¢, respectively, was
mounted with its b axis coincident with the ¢ axis of a
GE XRD-5 diffractometer for intensity measurement.
The moving-crystal, moving-counter technique was
used with a symmetric 20 scan range of 3.0° and a scan
rate of 2°/min. Upper and lower 10-sec stationary
background counts were taken for each reflection at the
extreme of the scan. The stability of the crystal was
monitored by following intensities of three standard
reflections at different positions in reciprocal space.
These standard reflections were used to put all intensity
data on a common scale. The maximum intensity
variation during data collection was =+59%. No
systematic trend was evident. Data were collected
using Nb-filtered Mo K« radiation with the pulse height
analyzer set to accept about 909, of the Mo Ka radia-
tion when centered on the peak. A takeoff angle of
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4° was used. Mosaic spread of the crystal was checked
by the w-scan technique and found to cause a maximum
half- helght peak width of approximately 0.37° for a
typical strong reflection. Ten reflections had intensi-
ties which exceeded the linear reponse range of the
counter. These intensities were remeasured by re-
ducing the amperage on the X-ray tube until all reflec-
tions fell within the range of linearity.

All of the 1873 “independent reflections for 20mox, <
45° [(sin 8) /X £ 0.54] were collected. These intensities
were then corrected for background and reduced to
values of F? by application of the Lorentz and polariza-
tion factors using a program written by P. Isaacs and
G. S. Smith and subsequently revised by R. F. Stewart.
Standard deviations were assigned to each reflection on
the basis of counting statistics in the program according
to the formula

¢(I) = [CT + 0.25(tc/ts)*(By + B) + (PI)2]”

where CT is the total integrated count in time fc,
Ig is the time required for each background count B
and B,, and P is 4 factor introduced to correct for ran-
dom fluctuations encountered during data collection. A
value of 0.045 was chosen for P.  Reflections having an
intensity I < 2.00(I) were classified as unobserved and
were not included in the refinemerit of the structure.

No corrections for absorption were made on this crystal,
asp = 7.9 cm~!for Mo Ka radiation. Consideration of
the maximum and minimum path lengths for the crystal
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shows the transmission factors to range from about
0.92 to 0.89.

Solution and Refinement of the Structure

A three-dimensional Patterson function was calcu-
lated using the 954 independent observed reflections.
The vatiadium atom was easily located from this Pat-
terson map. A Fourier map, phased on the vanadium
atomi, revealed the locations of the five atoms surroun-
ding the vanadium atom. After least-squares refine-
ment of the positional and thermal parameters for the
six atoms, the value of the discrepancy index R, =
| F, |/Z|Fs| was 38%. A difference elec-
tron dens1ty map was then computed which showed the
positions of the 12 carbon atoms. Three cycles of
least-squares refinement of positional and isotropic
thermal parameters fot all of the 18 atoms led to values
of R; of 11.1%, and a weighted agreement factor, R, =
[Sw(| Fo| |F))2/ZwF21" of 11.6%. At this
point some punching errors were corrected and the
vanadium and vanadyl oxygen atoms were refined with
anisotropic thermal parameters, yielding an R; of 9.2,
Another difference Fourier map was computed, in which
18 of the 27 highest peaks, which ranged in density from
0.72 to 0.41 in e—/A3, corresponded to reasonable
positions for hydrogen atoms on the 8-ketimine ligand.

The 18 hydrogen atoms were then included in the
refinement. Their positional parameters were allowed
to vary, but their thermal parameters were fixed at 1
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TaBLE IT
FINAL POSITIONAL AND THERMAL PARAMETERS®
Atom % ¥ z B} Ae
v 0.07702 (12) 0.25543 (18) 0.48685 (22) 2,62¢
O3 0.1388 (5) 0.1605 (6) 0.5815 (9) 3.23¢
O 0.1234 (4) 0.2783 (5) 0.2685 (8) 2.94 (15)
O2 0.1426 (5) 0.3965 (6) 0.5464 (9) 3.32 (17)
N1 0.4611 (6) 0.3312(7) 0.3744 (11) 3.07 (19)
N2 0.4677 (6) 0.1973 (7) 0.6324 (10) 2.96 (18)
Cy 0.1590 (9) 0.2562 (14) 0.9920 (15) 4.15 (24)
Ce 0.0968 (7) 0.2291 (9) 0.1296 (12) 2.98(21)
Cs 0.0136 (9) 0.1653 (10) 0.1066 (15) 4.15 (28)
Ca 0.4478 (8) 0.3631 (9) 0.2229 (14) 3.30 (24)
Cs 0.3634 (12) 0.4353 (13) 0.1716 (21) 5.44 (36)
Cs 0.3932 (12) 0.3648 (14) 0.5039 (21) 6.23 (41)
Cr 0.3835 (9) 0.2794 (11) 0.6231 (18) 4.41 (30)
Cs 0.4616 (8) 0.1066 (9) 0.7187 (13) 3.00 (23)
Co 0.3724 (10) 0.0823 (13) 0.8176 (17) 4.38 (31)
Cu 0.0367 (9) 0.4718 (10) 0.7310 (15) 3.46 (28)
Cn 0.1218 (8) 0.4710(9) 0.6540 (13) 2.85(22)
Cruz 0.2984 (12) 0.0540 (14) 0.3054 (19) 4.92 (35)
Hud 0.1314 (73) 0.2124 (83) 0.904 (12)
Hiz 0.2297 (72) 0.2294 (84) 0.018 (11)
His 0.1783 (75) 0.3379 (90) 0.991 (13)
Ha 0.0102 (78) 0.1348 (89) 0.002 (14)
Hs 0.3045 (86) 0.4024 (99) 0.212 (14)
Hisa 0.3629 (79) 0.4196 (94) 0.035 (14)
Hss 0.1134 (80) 0.005 (10) 0.832 (15)
H 0.4333 (84) 0.4329 (99) 0.545 (14)
Haz 0.3542 (80) 0.3336 (93) 0.427 (13)
Hn 0.4141 (90) 0.322 (11) 0.697 (15)
Hr2 0.3451 (68) 0.2701 (90) 0.740 (13)
Hn 0.3883 (77) 0.1354 (90) 0.908 (13)
Ho2 0.3259 (77) 0.0853 (91) 0.739 (13)
Hss 0.3847 (78) 0.018 (10) 0.860 (13)
Hig,1 0.4769 (76) 0.0180 (88) 0.211 (12)
Hiz,1 0.3317 (82) 0.1095 (99) 0.286 (14)
His,2 0.2820 (83) 0.0644 (99) 0.398 (14)
Hiz,s 0.2604 (80) 0.0219 (88) 0,201 (14)
Anisotropic Temperature Parameters® (X 10%)

Atom B B2 B3 Bz Bis B3
vV 27.3(9) 53.7(14) 105.7 (27) 3.0 (15) 8.1(11) —6.4(26)
Os 37.9(48) 67.5(71) 112.3(15) 4.7(5) —2.4(7) =—17.0(8)

e Numbers in parentheses are esd’s in the last figure quoted.
b Hydrogen atom temperature factors were not refined but were
given a B value one unit greater than the carbon atom to which
they were attached. ¢ Equivalent isotropic B’s are quoted here
for the anisotropically refined atoms., ¢ The first subscript in
the designation of each hydrogen atom refers to the carbon atom
to which it is bonded. ¢ Anisotropic temperature factors are of
the form: exp[— (ﬁuh2 + Bnk? + Bnl? + 2Buhk + 28uhl +
28xkl)].

unit greater in B than the value for the carbon atom to
which they were attached. Seven more cycles of full-
matrix least-squares refinement, in which the positional
parameters for all atoms including hydrogen, as well as
the thermal parameters for all atoms but hydrogen,
were varied, led to final Ry = 7.59, and R, = 6.8%.
The maximum shift in bond distances upon inclusion of
the hydrogen atoms in the refinement was 1.8 o, the
average change being 0.7 ¢. During the final cycle of
refinement no positional or thermal parameter shifted
by more than 339 of its estimated standard deviation,
the average change being approximately 29,. A final
difference Fourier map was essentially featureless with
the highest peak, which was in the vicinity of the
vanadium atom, having a value of 0.52 e=/A% A
calculation of the structure factors for the 919 unob-
served data gave two reflections with an ch[ greater
than twice the minimum observable.

Throughout the solution and refinement of the
structure, the function minimized was Zw(}Fo' -
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TaBLE 111
PriNcIPAL MOLECULAR DIMENSIONS®

Intramolecular nonbonded

————————Bond distances, A—————— contacts, A
V-0 1.945(7) Nz=Cq 1.512 (15) 0:1~N; 2.764 (11)
V-02 1.956 (8) Co—Cs 1.373 (16) O—N2 2.774 (11)
V-0s 1.585 (7) Ciuo~Cu 1.359 (16) 0:1-02 2.665 (10)
V-Ni 2.059 (9) Cs—C4 1.391(17) N1-N3 2.638 (12)
V-N2 2.048 (8) Cg~Cro 1.389 (16) 03-01 2.907 (9)
01~C2 1.305 (12) Ce~Cr 1.421 (21) 0s—02 2.837 (11)
0:-Cu1 1.294(13) Ci~C: 1.487 (16) 03Ny 2.869 (11)
Ni-Cq 1.292 (14) Ce-Cs 1.480 (19) 0:=N32 2.946 (11)
N~Cs  1.298(14) Cs~Cy 1.534 (17) 01~-N> 3.772 (10)
N1-Cs 1.505 (19) Cu~Cu 1.497 (20) 0:-N1 3.884 (11)
Interbond angles, deg
0:-V-01 110.4 (3) Cs~Cs~N1y 121.3 (1.0)
03~V—-02 106.0 (3) Co—Cs—Ny 120.0(1.0)
O3-V-N; 103.1 (4) Co—Cs-Cro 116.4 (1.0)
05-V-N2 107.7 (4) C1~Cs~N3z 122.0 (1.0)
0:-V-N: 150.7 (3) Cs—~Cs—N2 121.6 (1.0)
O1~V-N: 141.6 (3) V-O1—Cz 129.7 (0.6)
01-V-N1 87.3(3) V-0r-Cut 130.0(0.7)
N1-V-N: 79.9 (3) V-Ni-Cs 129.0(0.8)
Ng~V-02 87.7 (3) V-N:-Cs 128.2 (0.7)
0-V-01 86.2 (3) V-N1-Cs 108.4 (0.8}
01-Co~C1 114.4 (1.1) V-N:=Cr 112.0(0.7)
01~C2~Cs3 123.4 (1.0) Ce—N1-C4 122.3 (1.0)
Ci—-Co—Cs 122.0 (1.1) Cr=Ng~Cs 119.6 (0.9)
0:~C11—Cu2 114.6 (0.6) Co-C3—Cy 127.7 (1.2)
0:—C1—Cno 123.4 (1.0) Cs—C10—-Cuz 127.9(1.1)
C12=C1:—Cro 121.9 (0.6) N1=Cs~Cr 112.1(0.7)
Cs—Ce—Cs 118.6 (1.1) Ce—Cr—N2 113.3(1.1)

o Standard deviations of least significant figures are given in
parentheses.

‘Fcl)z, with the weight equal to 4F.%/¢?(F,?). The
final error in an observation of unit weight is 1.55.
Scattering factors used for the O, N, and C atoms were
those tabulated by Ibers;!? the factor for the vanadium
atom was taken from calculations of Cromer and
Waber.?® The hydrogen atom scattering factors were
those of Stewart, et al.'* The corrections for anomalous
dispersion of the vanadium atom are small (Af' =
0.31 and Af"" =0.60 for Mo Ke) and none was applied.
Computations were mainly performed on an IBM-360
computer. The major programs used were: Patter-
son and Fourier syntheses, Zalkin’s FORDAP; structure
factor and least-squares refinement, Prewitt’s SFLS-5.

Table I lists the observed structure amplitudes,
10[F°\, and the final calculated structure factors,
10F,, eachinelectrons. The final fractional coordinates
and thermal parameters for all atoms are given in
Table II. The anisotropy of the thermal motion for
the vanadium and oxygen (O;) atoms is small. The
major axis of the atomic thermal ellipsoids for both
atoms is very nearly parallel to 5.

Results and Discussion

The crystal consists of discrete molecules of VO(acen)
which have no crystallographic symmetry; the very
approximate C, symmetry of the molecule is largely
destroyed by twisting of the ethylene group about the
carbon-carbon bond. Selected interatomic bond dis-
tances and angles along with their standard deviations
are given in Table III. A view of the molecule pro-

(12) J. A. Ibers in ‘“‘International Tables for X-Ray Crystallography,”
Vol. ITI, The Kynoch Press, Birmingham, England, 1962, p 202.

(13) D.T.Cromerand J. T. Waber, Acta Cryst., 18, 104 (1965).

(14) R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys.,
423, 3175 (1965).
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jected down the crystallographic b axis is shown in
Figure 1, which also includes the atom designations.

The coordination figure around the central vanadium
atom is basically a square pyramid formed by the two
oxygen and two nitrogen atoms of the quadridentate
ligand at average distances of 1.950 (6) and 2.053 (6) A,
respectively. An apical vanadyl oxygen atom com-
pletes the square pyramid at a distance of 1.585 (7) A
from the vanadium atom, which is within the range
1.56-1.67 A reported for other vanadyl complexes. The
vanadium atom is displaced 0.58 A above the least-
squares plane of the four coordinating atoms (O1, O,,
Ny, and N,) of the 8-ketimine. The coordination pyra-
mid surrounding the vanadium atom is shown in Figure
2along with those for bis(acetylacetonato)oxovanadium-
(IV), VO(acac)s,® and cis-bis(1-phenyl-1,3-butane-
dionato)oxovanadium(IV), VO(bzac)..’* The pyramid
in VO(acen) very closely approximates those found in the
B-diketone complexes. The distances between the
coordinated N and O atoms (the “bite distance” of the
chelating rings) are quite similar to the O-O distances in
the B-diketonates, which also contain six-membered
chelate rings. However, the O-O distances in the
tartrate’ complex Nas[VO-dl-tart]s-12H,0, which con-
tains a five-membered ring, are smaller than in either of
the other three complexes. It may be noted that
VO(acac); has been described as a distorted trigonal
bipyramid by at least one group of authors.'” However,
if we choose what appears to be a reasonable’®:1® apex-
to-base angle (vanadyl oxygen—V-basal ligand angle) of
290 and <115° for a square-pyramidal configuration,
the angular distortions from a trigonal bipyramid are
muich greater than those for the square pyramid in both
VO(acac):and VO(acen).

Bond distances within the 8-ketimine do not differ
significantly from those previously determined for
three0—22 copper derivatives of this ligand. The
average C-N and C-O bond distances of 1.29 (1) and
1.30 (1) A, respectively, agree with those found for a
series of salicylaldimine complexes. A survey?®® by
Lingafelter and Braun of eight three-dimensional
determinations of salicylaldimates gives an average of
1.295 A for the C-N bond and 1.312 A for the C-O
bond, which correspond to bond orders of approximately
1.8 and 1.5, respectively.

The ethylenediamine portion of the quadridentate
ligand assumes a configuration approximately halfway
between gauche and eclipsed, as the torsion angle between
the carbon-nitrogen bonds is 33.3°. The two carbon
atoms Cs and Cy are 0.77 and 0.53 A respectively,

(15) R. P. Dodge, D. H. Templeton, and A. Zalkin, J. Chem. Phys., 88, 556
(19((:;; P. K. Hon, R, L, Belford, and C. E. Pluger, ¢bid., 48, 1323 (1865).

(17) K. L. Baker, D. A. Edwards, G. W. A. Fowles, and R. G. Williams,
J. Inorg. Nucl. Chem., 29, 1881 (1067).

(18) E. L. Muetterties and R. A. Schunn, Quar!. Rev. (London), 20, 245
(l*ziig; A. L. Beauchamp, M. ]J. Bennett, and F. A. Cotton, J. Am. Chem.
Soc., 90, 6675 (1968). -

(20) G. R. Clark, D. Hall, and T. N. Waters, J. Chem. Soc., 4, 223 (1968).

(21) D. Hall, H. J. Morgan, and T. N. Waters, ibid., 677 (1966).

(22) D.Hall, A. D. Rae, and T. N. Waters, ibid., 5897 (1063).

(238) E. C. Lingafelter and R. L. Braun, J. Am, Chem. Soc., 88, 2051
(1966).
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Figure 1.—A view of a molecule of VO(acen) projected on the
crystallographic ac plane.

VOlacen) VO(acac), VO(bzacl,

Figure 2.—A comparison of the coordination pyramid in
VO(acen), VO(acac),, and VO(bzac) (acac = acetylacetonate;
bzacA= benzoylacetonate). Average standard deviations are
0.01 A.

above the plane containing the vanadium and two
nitrogen atoms. The dihedral angle?® between the
N;-V-N; and the C¢~V-Cy plane is 17.8°. No isolated
portion of the molecule is exactly planar, as indicated by
the equations for the weighted least-squares planes
given in Table IV. The acetylacetoneiminatovana-
dium rings exhibit a folding along the oxygen—nitrogen
line which is comparable to that found in many g-
diketone complexes.?? The dihedral angle between
the plane containing the O—N; portion of the ligand and
the plane defined by the O-V-N,; group is 16.0°,
whereas the comparable angle which measures folding
along the O;-Nj; line is 19.3°. The angle between the
planes O;-V-N; and Oy~V-N; is 132.3° which can be
compared with 134.7°%n VO (acac); and 135.6° in VO-
(bzac),.

(24) K. ,,’ Raymond, P. W. R. Corfield, and J. A. Ibers, I'norg. Chem., T,
842 (1068).

(25) M. J. Bennett, F. A, Cotton, P. Legzdins, and S. J. Lippard, sbid.,
7, 1770 (1968).
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Figure 3.—Molecular packing for VO(acen) viewed down the
crystallographic ¢ axis.

TaBLE IV
WEIGHTED® LEAST-SQUARES PLANES OF THE
Form LX + MY + NZ = D?

Plane
no. Atoms L M N D
1 Ni, Nz, O1, Oz 0.5242 —~0.7107 0.4691 —0.4776
2 Oy, Cs, C3, C¢, N1 0.5420 —0.8047 0.2423 —1.300
3 Oz, Cu, Cu, Cg, N2 0.4272 —0.5000 0.7533 1.702
4 Cs, C1, C3, O1 0.5400 —0.8033 0.2513 —1.287
5 Cq, Cs, Cs, N1 0.5269 —0.8201 0.2234 —1.363
6 Cs, Cs, Cu, N2 0.3777 —~0,4793 0.7922 2,038
7 Cu, Cig, Crz, O2 0.35168 —0.5947 0.7230 0.9713
8 N3, Cs, Cr 0.7382 —0.3844 0.5544 0.3706
9 Cs, C1, N2 0.4433 —0.5708 0.6912 1.139
10 Cs, V, Cr 0.3790 —0.5977 0.7085 1.270
11 N1, V, N2 0.1707 —0.7810 0.6007 0.1259
12 N3, V, O1 0.5219 —0.8482 0.0902 —1.819
13 N3, V, O: 0.4297 ~0.4458 0,7852 2.085
Plane
no, ,———e———Distances of atoms from planes, A—————
1 N, 0.086; Nz, ~0.094; O, —0.054; 0O 0.061; Vv,0.58
2 0Oy —0.010; C0.032; Cs, —0.009; Cy4, -~0.030; N3, 0.017
3 0 —0.020; Cu,0.047; Cun, —0.003; Cs, —0.048; N, 0,024
4 Cy 0.029; Ci, —0.013; C; —0.013; O, —0.003
5 Cq —0.014; C50.004; Cs, 0.007; Ny, 0.002
6 Cs, —0.012; Cy, 0.005; Ci, 0.004; N3 0.002
7 Cu, —0.018; Cio, 0.006; Ci2,0.008; 01, 0,002
11 G 0.775; Cz,0.526
Dihedral Dihedral
angle, angle,
Planes deg Planes deg
8-9 33.3 3-13 19.3
10-11 17.1 12-13 132.3
2-12 16.0

s Atoms are weighted by the reciprocals of their variances.
% The matrix to transform from monoclinic to orthogonal coordi-
nates is

13.687 0
0 11.957
0 0 8.122

—0.5332
0

A view of the crystal structure down the crystallo-
graphic ¢ axis is given in Figure 3. In the solid there is
not even weak coordination to the vanadium atom in
the vacant position below the basal plane, the closest
intermolecular distance of approach being that of a
carbon atom (Cyo) at 4.0 A. There are two rather close
intermolecular contacts between methyl groups in the
crystal: CyCy = 3.68 Aand C4-C, = 3.74 A,
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TABLE V

COMPARISON OF VANADIUM COORDINATION IN VO(acen)
wITH THAT OBSERVED IN VO(acac): AND VO(bzac);

(0]
As Ay
N
%
VAN
A, Ay
e e Value, deg——————u——,
Angles VO(acen)® VO(acac)? VO(bzac)s®
O0-V-A; 110.4 (3)4 106.2 (4) 106.6 (4)
O-V-4A; 106.0 (3) 105.6 (4) 104.0 (4)
O-V-A; [103.1 (4)]° 108.4 (4) 106.9 (4)
O-V-A, [107.7 (4)] 104.8 (4) 106.0 (4)
Av  106.8 106.2 106.0
A-V-Aq 86.2 (3) 83.5(3) 85.8 (3)
A-V-Ay [87.3 (3)] 87.8(3) 87.5(3)
Ay-V-Ay [79.9 (3)] 83.9 (3) 82.2 (3)
AV-A, 187.7 (3)] 86.9 (3) 87.3(3)
Av 85.3 85.5 85.7
A-V-4, [150.7 (3)] 145.5 (3) 146.5 (3)
A-V-4q [141.6 (3)] 149.6 (3) 149.9 (3)
Av  146.1 147.5 148 .2
Value, A
Distances VO(acen) VO({acac): VO(bzac)2
V-0 1.585 (7) 1.571(10) 1.612(10)
V-A: 1.956 (8) 1.974(8) 1.982(8)
V-A, 1.945(7) 1.955(8) 1.986(7)
V-4; [2.059 (9)] 1.983(7) 1.952(8)
V-A, [2.048 (8)] 1.962(7) 1.946(8)
Distance of van- 0.58 0.55 0.54

adium atom from
basal plane
¢ For VO(acen) A, As, A, and A4 correspond to O, O, N,

and N, respectively. ? Vanadyl(IV) bisacetylacetonate.’ Val-
ues are those obtained from the anisotropic refinement of data of
Dodge, et al.; ¢f. P. K. Hon, R. L. Belford, and C. E. Pluger,
J. Chem. Phys., 43, 3111 (1965). ¢ Vanadyl(IV) bisbenzoyl-
acetonate.’ 94 Standard deviations of least significant figures
are given in parentheses. ¢ Values involving nitrogen atoms are
enclosed in brackets.

Table V compares the bond distances and angles for
VO(acen) with those of the two previously determined
B-diketone structures. From Table V and Figure 2,
one can see that there are no significant differences in
the geometry between the three compounds. The aver-
ages for the various types of angles in these three square
pyramids are equal within experimental error. In
addition, molecular models indicate that there is no
significant additional steric hindrance imposed by the
ethylenediamine bridge (or by any other portion of the
VO(acen) molecule) when one attaches a sixth ligand
trams to the oxovanadium group. Comnsequently, there
are no readily apparent steric reasons for the lack of
solvent dependence of the spectroscopy for VO{acen)
when compared with the large solvent shifts found for
the 8-diketone complexes.

Closer inspection of the bond distances in Table V
reveals a possible explanation for this lack of solvent
dependence, involving charge buildup (vide supra) on
the central vanadium atom from the strong in-plane
o donation of the B-ketimine. If the multiple oxo-
vanadium bond which dominates the ligand field is to be
maintained, no axial coordination can occur. The
average V-O and V-N in-plane distances of 1.950 (6)
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and 2.053 (6) A, respectively, for VO(acen) are amiong
the shortest determined for simple monomeric oxo-
vanadium compounds.?® They can be compared with
the average of 1.969 (4) A found for VO(acac): and the
average of 1.984 (6) A determined in ¢is-VO(bzac); for
the two V-0 distances on the side of the chelate rings to
which the methyl groups are attached.?” Similarly, the
average V-N distance of 2.053 (6) A is shorter than the
average of 2.11 (1) A found for three of the V-N bondsin
an oxovanadium porphyrin complex.?® Although the
differences in bond lengths considered here are mar-
ginally significant (approximately 4-7 o), they all indi-
cate stronger coordination of the in-plane donor atoms
in VO(acen). The vanadyl-apical oxygen bond order
in all of these complexes appears to be sufficiently high
so that this bond distance is relatively insensitive to
other bonding variations.

Further support for the idea of electronic cause for
the lack of coordination of a solvent with VO(acen)
comes from the following evidence. (1) In solution,
the interaction of VO(acac), with base is greater than
that for VO(acen). The experimental®® heat of reaction
(AHzn) for the addition of 2,4-dimethylpyridine N-
oxide to VO(acac); and VO(acen) in dichloromethane
is —5.4 &= 0.1 and —0.07 = 0.02 kcal/mol, respectively.

(26) Shorter vanadium~ligand distances include the vanadium-hydroxyl
oxygen distances in the dimericv anadyl complexes (NHs)¢[VO-d-tart]:-
2H,08 of 1.93 (2) and 178 (2) A and Nai[VO-di-tart]l:- 12H:07 of 1.917 (8)
and 1,902 (8) A, A recent structural determination of the distorted square-
pyramidal Na((C:Hs)4N) [VO(benzilate):] -2CsH7OH [N. D. Chasteen, R, L.
Belford, and I, C. Paul, Inorg, Chem., 8, 408 (1969)] shows distances of 1.900
(8) and 1,033 (8) A between vanadium and hydroxyl oxygen.

(27) In the latter compound the two vanadium—oxygen distances on the
opposite side of the chelate ring were found to average 1.949 (6) A, The
authors concluded that this “anomalously short” V-0 distance is due to a
conjugative effect involving the phenyl group and the chelate ring which
causes electron density drift into the V=O bonds.

(28) R. C. Pettersen and L, E. Alexander, J. Am. Chem. Soc., 90, 3873
(1968).

(29) The authors thank R, O, Ragsdale and C. J. Popp for this information
received prior to publication.
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(2) The complex® N,N’-ethylenebis(trifluoracetyl-
acetoneiminato)oxovanadium(IV), VO(tfen), shows
solvent dependence of its spectroscopic properties. The
strong electron-withdrawing power of the CF; groups
seems to remove sufficient electron density from the
vicinity of the vanadium atom so that a coordinating
solvent can attach itself to the axial position. (3) The
infrared and esr spectral parameters® for VO(acen) and
VO(tfen) both indicate a stronger in-plane ligand field
for the VO(tfen) complex. The V=0 stretching
frequency for VO(acen) is 982 em~!, whereas that for
VO(tfen) is ~999 cm~! in acetonitrile. Also, the iso-
tropic hyperfine splitting parameter, A, is higher
(104.6 G) in VO(tfen) than the 102.2 G found for VO-
(acen) under similar conditions. This is in accord with
a smaller 4s contribution to the o bonding in the VO-
(tfen) complex. (4) If axial ligation occurs in oxo-
vanadium complexes, the vanadium atom moves closer
to the plane of the basal ligands and thus acquires
increased electron density. A recent structure deter-
mination?! of VO[(H,0):S04}-H,0, which has a water
molecule bonded in the (normally vacant) axial position
of the square pyramid, shows the vanadium atom to be
0.29 A out of the basal plane as compared to the 0.59 A
found for VO(acen). The increase in charge density
caused by movement of the vanadium atom toward the
basal ligands seems to be a factor in preventing a
coordination solvent from bonding to the sixth vacant
axial position in VO(acen).
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